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Abstract. Recurrent neural networks, like the LSTM model, have been
applied to various sequence learning tasks with great success. Following
this, it seems natural to use LSTM models for predicting future loca-
tions in object tracking tasks. In this paper, we evaluate an adaption
of a LSTM-MDL model and investigate its reliability in the context of
pedestrian trajectory prediction. Thereby, we demonstrate the fallacy of
solely relying on prediction metrics for evaluating the model and how
the models capabilities can lead to suboptimal prediction results. To-
wards this end, two experiments are provided. Firstly, the models pre-
diction abilities are evaluated on publicly available surveillance datasets.
Secondly, the capabilities of capturing motion patterns are examined.
Further, we investigate failure cases and give explanations for observed
phenomena, granting insight into the models reliability in tracking ap-
plications. Lastly, we give some hints how demonstrated shortcomings
may be circumvented.

Keywords: recurrent neural networks, pedestrian trajectory prediction,
generative models

1 Introduction

One component of an object tracking system is the estimation and prediction
of object motion based on observed measurements. Traditionally, this process is
modeled using a Bayesian formulation [1] in approaches like the Kalman filter
[2] or nonparametric methods, such as particle filters [3]. Alternatively, the in-
ference problem can be construed as a sequence generation problem. This way,
we can step in the direction of recurrent neural networks, like Long Short Term
Memory (LSTM) networks [4], which are commonly used for sequence genera-
tion and processing. Due to the recent success of LSTM models in a variety of
sequence processing tasks, like speech recognition [5][6] and caption generation
[7][8], these models seem like a natural choice for the task of pedestrian trajec-
tory prediction. In particular, we focus on the model introduced by Alex Graves
[9], which was originally designed for the generation and prediction of hand-
writing. His proposed model (subsequently referred to as LSTM-MDL model),
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which consists of a LSTM network with a mixture density layer (MDL) [10]
stacked on top, gained popularity in recent years and is applied in a wide range
of applications, for example the prediction of basketball trajectories [11]. In the
context of motion prediction in video surveillance data, the work of Alahi et
al. [12][13] or Bartoli et al. [14] utilizes the aforementioned model to generate
single trajectory predictions based on multiple correlated trajectories. Due to
the capabilities of recurrent neural networks to model arbitrary functions and
the results of the LSTM-MDL model in handwriting generation, we expect an
adaptation of the model to be well suited for modeling complex trajectories in
video surveillance data. Here, a trajectory with a significant number of state
changes, which are mainly influenced by statistical long-term dependencies, is
defined as complex. Since the domain of object tracking is particularly different
to handwriting prediction in certain aspects, like position-dependent movement
patterns, an adaptation of the model to use positional information is crucial.

The main contribution of this paper is an extensive evaluation of a slightly
modified version of the LSTM-MDL model, combined with an investigation on
the reliability of this model in the context of pedestrian trajectory prediction.
Thereby, when it comes to evaluating the model, the fallacy of solely relying on
prediction metrics, such as the final or average displacement error [12][15][16],
is demonstrated. Further, it is shown how the overall capabilities of the model
can lead to suboptimal prediction results. Here, such prediction metrics can lead
up to false conclusions in evaluating the model as a whole, as these metrics are
unable to describe the full range of the models capabilities to capture and repre-
sent motion in a scene. Towards this end, two-folded extensive experiments are
provided. In a first step, the models abilities in predicting pedestrian trajectories
is evaluated on several publicly available surveillance datasets. This evaluation
shows that the model performs poorly, especially on datasets that consist mainly
of complex trajectories, which is not obvious at a first glance. To ensure that
this is not a cause of the models inability to capture complex, non-systematic
motion from data, we examine the models modeling capabilities in our second
series of experiments. As a last step, we further investigate failure cases of the
model in the prediction task based on both of our experiments and give expla-
nations for observed phenomena through synthetic toy examples. Furthermore,
we demonstrate some problems and shortcomings that might occur when this
model is applied to video surveillance tasks and give some hints on how these
may be circumvented.

The remainder of this paper is structured as follows. Following this section, we
introduce the variation of the LSTM-MDL model that we have used in this paper
and discuss the adaptations made (section 2). After that, we are investigating
the reliability of this model for pedestrian trajectory prediction, going through
the experimental section (3). Finally, we showcase and discuss different problems
and shortcomings with the model, that occur regarding prediction tasks (section
4). Section 5 provides some final conclusions.
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2 Preliminaries

For modeling human motion in a generative fashion, we are using a slight mod-
ification of the LSTM-MDL model described in [9]. Recurrent neural networks
are a natural choice for modeling sequence data, such as human motion repre-
sented as timely-ordered sequences of spatial positions. Additionally, regarding
the context of tracking pedestrians in a surveillance scenario, generative model-
ing provides advantages over discriminative training, as neither labeled training
data nor negative examples are required. Especially the latter is rather difficult
to obtain, as the concept of a negative example concerning pedestrian motion is
not well-defined. In its original form, the network was used to model handwritten
text, represented as a sequence of pen position offsets. Therefore, the network
learns an offset distribution conditioned on previous offsets. Consequently, se-
quence prediction, like endpoint prediction, is modeled implicitly by this model.

While utilizing offsets helps stabilizing the learning process, presumably due
to the limitation of the input and output spaces, spatial information gets lost
(which does not harm handwriting generation). More specifically, spatial infor-
mation only persists in an implicit fashion by performing path integration. Given
this fact, it is not ensured that the model captures spatial points of interest when
learning the model. In the context of handwriting generation, this particular fea-
ture is not necessary, as generated handwriting does not have to consider e.g.
obstacles in space. As a consequence, prediction in the original LSTM-MDL
model mostly relies on the previously observed sequence. This is where a major
difference between handwriting generation and pedestrian trajectory prediction
comes into play, where positions in a scene may lead to previous information
being disregarded in favor of immediate predictions given the current location,
e.g. for avoiding a static object. In this respect, the actual position of a person
in a scene is important when modeling future movement and must be used as an
input to the model. Following this, there are two possible ways to further adapt
the original model given the current position: either by trying to predict the next
position xt+1 (where will the person be next) or the next offset δt (where will
the person go next). During our experiments, we found that predicting an offset
distribution increases numerical stability while training, and also improves re-
sults in general, as opposed to predicting a positional distribution. Such changes
were, for example, also made in [12], where the network is used in that way to
predict motion in crowded environments, generating a positional distribution.
In their work they stacked another neural network on top to model crowd in-
teractions, which may help in coping with instable positional predictions. Since
their main focus was on predicting motion, a single Gaussian is used instead of
a multi-component Gaussian mixture, thus further reducing the problem com-
plexity and modeling capabilities. In contrast, we examined the prediction and
modeling capabilities of the model. Ultimately, we adapt the model by chang-
ing the input layer to take positions instead of offsets. The adapted model is
depicted in figure 1. The output y of the model is a 6 × K dimensional vec-
tor and consists of the parameters of a K component Gaussian mixture model:
y = (µk, σk, ρk)k=1,...,K . This model generates a distribution with respect to the
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next offset δt. The next trajectory position can then be obtained by calculating
xt = xt−1 + δt−1 with δt−1 ∼ yt−1.
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Fig. 1. Recurrent neural network prediction architecture with skip connections as de-
scribed by Graves [9]. The model has been modified to take positions as input rather
than offsets.

This model can be trained in a generative way, by maximizing the likelihood
of the data given the output Gaussian mixture parameters. Therefore, the loss
function L is defined as:
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It is important to note, that µt
k, σ

t
k, ρ

t
k themselves are dependent on the whole

history of inputs (xt,xt−1, ...,x0). Further, we opt to disregard the skip connec-
tions in the following, as gradient problems are less present during training in
our rather small network. With this decision, we also follow other works (e.g.
[12]) that do not use skip connections in their models.
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3 Evaluation

In this section the effectiveness of the adapted LSTM-MDL model is evaluated for
the task of pedestrian trajectory prediction (section 3.1). Additionally, we ran an
experiment to test the capabilities of the model to capture the statistics present
in the data (section 3.2). For evaluation, a selection of widely-used, publicly
available surveillance datasets are used. Each of these datasets observes one or
multiple scenes from a bird eye view. The selected datasets cover real world
scenarios under varying crowd densities and varying complexity of trajectory
patterns.

In order to differentiate between varying complexities of trajectory patterns,
and thereby also ranking these datasets, a categorization of observed motion
is required. The motion of an object can not only differ in the way the object
follows a path, but also in the form of the path. According to the motion type,
it is possible to differentiate between constant and accelerated motion. In case
of accelerated motion, it can further be distinguished between uniformly accel-
erated and unequally accelerated motion. Depending on the form or shape of
the trajectory, it is common to differentiate between rectilinear and curvilinear
motion. Furthermore, the dynamics of an object can vary over time and also
depend on location information. In accordance with the introduced motion cate-
gorization and the spatio-temporal context of motion, we define a simple motion
as a constant, rectilinear, and temporally constant motion. In return, an object
performs a very complex motion when it is unequally accelerated, curvilinear,
and spatio-temporal varying.

Our entire evaluation was initially based on 3 datasets that together contain
5 scenes. Details of these datasets are summarized in table 1.

Dataset UCY[17] UCY EWAP[16] EWAP SSD[18]
Details Students Zara ETH Hotel Hyang

video frame rate 25 25 25 25 29
annotation rate non-equidistant non-equidistant 2.5 2.5 non-equidistant
interpolated X X 7 7 X
number of trajec-
tories

967 489 360 390 219

mean trajectory
length

13.481 11.043 24.744 16.779 1581.087

Table 1. Details of pedestrian trajectories datasets.

For the purpose of this paper, we focus on the scenes ETH, taken from the
ETH Walking Pedestrians (EWAP) dataset [16], and Hyang, taken from the
Stanford Drone Dataset (SDD) [18]. We assume that these two scenes suffice
to show and discuss capabilities of the model, as these scenes represent the two
opposite ends of the covered range regarding the complexity of the underlying
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data. Although in the chosen exemplary surveillance scenarios with an aerial
view the complexity is limited compared to other scenarios like video network
data or data captured on board a vehicle, it still allows for a variety in complexity
of observed motion. This holds true for the scenes chosen for our evaluation. The
trajectories from the ETH scene can be described as rather simple, where the
amount of spatio-temporal variation is very limited and most trajectories can
be adequately described with a constant velocity model following a straight line.
However for Hyang the scene context strongly influences the person trajectories.
For example, there are sidewalks with junctions leading to spatially depending
changes in the curvature of the trajectories. With the occurring switches between
rectilinear and curvilinear motion and an increased amount of walking paths this
scenario can be rated as complex. To provide a better understanding of both
scenes, example trajectories are depicted in figure 2.

Fig. 2. Example trajectories taken from ETH (left) and Hyang (right) scenes.

For our experiments, we slightly modified the data of the Hyang scene1.
First, the scene is recorded with a drone from different positions and split into
15 separate recordings containing different trajectories. Seven of these have a
large overlap in the observed parts of the whole scenery. Because of that, we are
able to project the trajectory data of these recordings into a single coordinate
system, using a homography matrix for the transformation, to create a larger set
of trajectories for training and evaluation. Secondly, the provided data provides
manual annotation, roughly every 30 frames. Between these manual annotations,
automatic annotations have been generated. We have replaced these automatic
annotations with a linear interpolation to gain an equidistant annotation rate.
Using a linear interpolation seemed to improve the results produced by a learned
model. Lastly, we removed some trajectory association errors and annotation
drift at the borders of the scene. In this paper we are using this version of the
Hyang scene dataset.

1 The modified ground truth will be provided upon request.
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3.1 Applying the LSTM-MDL model for prediction

For evaluating the predictive capabilities of the model, we are measuring the
performance on the task of predicting the endpoint of a pedestrian trajectory,
given a portion of the respective trajectory. We trained 27 different model con-
figurations for each scene in our evaluation, with a varying number of layers (1,
2, and 3), LSTM cell state size (128, 256, and 512 dimensional) and number of
components (4, 8, and 16) in the Gaussian mixture model that is output by the
model. Each configuration was trained 3 times on a different random subset of
the respective dataset, using stochastic gradient descent with a learning rate of
0.005 and an exponential learning rate decay rate of 0.95. The unroll length is
set to the lower percentile of the trajectory lengths in the given dataset. This
provides a trade-off between the observation length and the number of training
examples. In the evaluation, the results of these 3 iterations are averaged to cope
with random effects in the trained models. No skip connections, as proposed by
Graves [5], were used. The model is implemented in tensorflow [19].

To measure the endpoint prediction we are using the final displacement error

FDE =

∑
i

√
(ŷi − yi)2
n

(2)

where ŷi and yi are the predicted and real endpoints of all n trajectories Ti
in the test dataset. These trajectories were not part of the training dataset
and make up for 20 percent of the whole dataset. The predicted endpoint is
determined by passing the first t trajectory points into the model and then
generating the remaining l points by using a maximum likelihood estimate on
the output mixtures. Here, the parameter t is set to be equal to the unroll
length used at training time. The performance of the model is compared against
a simple linear predictor that takes the last two of the t trajectory points to
calculate a constant offset. This offset is added to the last given trajectory point
l times to predict the trajectory endpoint. The prediction results for the ETH
scene are depicted in figure 3.

In this simple scene, the model expectedly performs better than the linear
predictor for nearly all trained configurations. This scene mostly features straight
or slightly bent trajectories. For the latter, the linear predictor performs worse,
as it doesn’t capture curvature. The LSTM-MDL model on the other hand is ca-
pable of learning and representing more complex paths, meaning it can capture
curved paths. Additionally, the linear predictor propagates a constant velocity
in its prediction, whereas the LSTM-MDL model is, generally speaking, capable
of modeling several velocity profiles and applying these according to given ob-
servations. Given these results, we expect the model to excel in more complex
scenes, where curved paths are more common. Following this, we proceeded and
scaled up the complexity of the data used. Figure 4 shows the results of the
endpoint prediction for the Hyang scene.

This dataset contains a lot more major walking paths including two junctions,
where the predictor has to choose from several continuations. Given the fact that
the adapted LSTM-MDL model is capable of capturing a large variety of different
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Fig. 3. Endpoint prediction results for ETH for the trained configurations (number of
layers, LSTM cell state size, and number of gaussian components) of the LSTM-MDL
model and the linear predictor.

Fig. 4. Endpoint prediction results for Hyang for the trained configurations (number of
layers, LSTM cell state size, and number of gaussian components) of the LSTM-MDL
model and the linear predictor.
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paths and tendencies in choosing between different continuations at junction
points, we expected the model to outperform the linear prediction by a large
magnitude. Against the odds, the model fails to surpass the linear predictor. In
fact, except in one case, the linear predictor outperforms the model. Furthermore,
the results vary strongly depending on the trajectories used for testing, making
the results supposedly random.

In order to give an explanation about why the adapted LSTM-MDL model
outperforms the linear predictor for the first scene but fails on the second one,
we first evaluate the models representation capacity in section 3.2. Following
this, we try to give explanations for observed phenomena in section 4.

3.2 Evaluating the models representation capacity

Looking at the results of the previous section, it appears that the adapted LSTM-
MDL model is not capable of capturing motion in more complex scenes. This
raises the question if the model is incapable of capturing more versatile motion
or if the endpoint prediction is not well suited to measure the performance of
this model. As a first step in answering this question, we ran another experiment
to test the models capability to capture the statistics of the data. In terms of
pedestrian motion these statistics include offsets, magnitudes, and the so called
path coverage. The last term describes the number of paths from specified sources
to sinks in the scene, and the distribution of trajectories with respect to these
paths.

For calculating these measures, the models generative capabilities can be used
to generate sample trajectories from different starting positions in the scene. In
the context of this paper, we are again focusing on the two datasets ETH and
Hyang. We provide sources and sinks for both scenes in the form of rectangles.
The set of sources is equal to the set of sinks in each dataset. A rough represen-
tation of the paths present in the datasets is depicted in figure 5.

Fig. 5. Sources, sinks and main walking paths in the ETH (left) and the Hyang (right)
scenes.
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For generating sample trajectories from the model, we draw 100 positions
from each source in the scene. Given these starting positions, we generate sample
trajectories using the model by iterating the following steps:

1. Feed the current position into the model to generate a distribution for the
next offset

2. Draw an offset from that distribution
3. Calculate the next trajectory point by adding the offset to the current posi-

tion
4. Set the calculated point to be the next current position

We stop generating new positions when the trajectory enters one of the sinks (i.e.
one of the other sources) in the scene or when we exceed a set limit of trajectory
points. All sampled trajectories for one dataset are collected in a sample dataset
DS , which will be compared to the training dataset DT .

For the comparison between DS and DT we calculate several statistics on
both datasets:

1. Histogram of magnitudes
2. Histograms of x and y offsets
3. 2D Histogram of offsets
4. Path coverage

We compare the histograms by using the absolute Pearson correlation as a mea-
sure of similarity. These histograms will be referred to as the motion profile of
the model. The path coverage is tested by checking which and how many of the
paths in the original dataset are represented by the model. Additionally, the dis-
tribution of the samples over the paths is again compared by using the absolute
Pearson correlation. As we have evaluated a total of 81 learned model check-
points, table 2 depicts an example for a good (subscripted with plus) and a bad
(subscripted with minus) performing checkpoint. Here, the good and bad check-
points perform accordingly in the measured dimensions. The given values are
the mean of 3 runs of the same configuration with a different random selection
of the training set.

Checkpoint
Motion profile Path coverage

Magnitudes Offsets (x, y) Offsets Paths Distribution Outlier ratio

ETH− .318 .573, .934 .352 6/9 .827 18.7 %
ETH+ .792 .818, .885 .422 5.67/9 .704 1.7 %

Hyang− .122 .870, .995 .844 7.33/20 .529 10.5 %
Hyang+ .539 .964, .997 .929 10/20 .633 6.2 %

Table 2. Statistics for a good (subscripted with plus) and a bad (subscripted with
minus) checkpoint of the ETH and Hyang scenes.

Figure 6 shows samples generated from these checkpoints. The left column
depicts samples from a bad and the right columns from a good model checkpoint.
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The two rows show samples from models learned on the ETH and the Hyang
dataset, respectively. It is visible, that the bad models produce much more ran-
dom trajectories. Still, for ETH both models capture the major walking paths
well. In contrast, for Hyang, the bad model captures less paths and both junc-
tions are biased towards the left border of the scene, causing samples to deviate
from the usual walking paths.

Fig. 6. Samples drawn from a good (right) and a bad (left) checkpoint learned on the
ETH (first row) and Hyang (second row) scenes.

Concluding this evaluation of the data modeling capabilities of the adapted
LSTM-MDL model, we figured that it is indeed capable of modeling complex
motion in given trajectory data. On the other hand this also means, that our
question, regarding the failure in the prediction task, is still unanswered and
must be further investigated. Following this, we try to give reasons for this in
section 4.

4 On the reliability of LSTM-MDL models for pedestrian
trajectory prediction

Regarding the results shown in section 3.2, the adapted LSTM-MDL model is
capable of capturing the statistics in the data, thus still leaving our question
concerning the poor prediction results unanswered. Thinking further, the reason
why the endpoint prediction is not particularly good and somehow appears to
become more random the better the model is, lies in the task and the common
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approach itself. Even if we have multiple hypotheses to choose from when pre-
dicting the endpoint of a given trajectory segment, we usually decide to go with
the most probable path (maximum likelihood estimation), also if its probability
is only slightly higher. That means, with an increasing number of paths, and
especially junctions in those paths, the prediction will become more instable,
the better the model is capable of representing the data. To clarify, this can be
pictured using a small toy example. Take for example 3 synthetic datasets D1,
D2, and D3 that contain trajectories that pass a 4-way junction. In D1, all tra-
jectories start at the bottom and pass the junction to the left. Dataset D2 also
contains trajectories starting at the bottom, but they pass the junction either to
the left or to the right. The last dataset D3 adds the possibility of going straight
over the junction. Now, if the model is large enough to cover all these paths, it
may generate sample trajectories starting from the exact same position that end
in very different positions. This is depicted in figure 7.

Fig. 7. Toy example datasets to showcase the problem with the modeling power of the
adapted LSTM-MDL model for prediction tasks.

Concerning endpoint prediction, we have a chance of completely missing the
true endpoint of 0, 50, and 66 percent. Depending on the absolute positioning
of the trajectory itself, it may be biased more or less towards a specific endpoint
region. This, in fact, still does not need to hold true for many trajectories in a
real world dataset.

Another aspect to consider is the number t of observed points prior to the
prediction. If there is at least one junction on a trajectory’s path, the observed
points before that junction do not necessarily provide useful information about
the continuation of that particular trajectory. Different observation lengths could
indeed lead to some bias towards a specific direction, but depending on the
variation in the training data, this is more or less helpful. In general, this fact has
to be taken into account, as trajectories generally vary in length, due to different
walking speeds of pedestrians. This also holds true, even if two trajectories follow
roughly the same path through the scene, when these are progressing at different
velocities. Here, the model will eventually have richer information for predicting
the continuation of the faster moving target, as for the slower moving target,
when the number of observed trajectory points is fixed, because the former has
progressed much further into the scene. The impact of the observation length is
illustrated in figure 8. In this figure, a trajectory (blue) from D3 is chosen, which
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is heading towards the left side crossing the junction. The learned model should
predict the most probable continuation of that trajectory (red), given trajectory
points up to the junction, a few steps into the junction and mostly through the
junction.

Fig. 8. Predicted continuation (red) of a partly observed trajectory (blue, starting at
black cross) given 30 (right before the junction), 35 (few steps into the junction, already
shows some tendencies), and 40 (almost through the junction, direction is now clear)
trajectory points (up to the black diamont).

It can be clearly seen how the choice of the observation length affects the
predictions of the model. In this particular case, having only observed trajectory
points just before entering the junction, the model does not even consider going
to the left. Given some more points that provide some information about the
continuation, the model switches to predicting a straight motion, which still is
not as expected. This may happen because the model is robust to noise, at least
to some extent. In the last case, it is clear how the trajectory should continue:
to the left. The model also captures this and does an appropriate prediction.

In conclusion, the adapted LSTM-MDL models capability of capturing and
representing a variety of complex paths is great for generating data, but some-
what obstructive for prediction tasks, such as endpoint prediction. Regarding
this, another question arises that should be investigated further in future works:
How can we possibly fix this? No matter what the exact solution will be, it will
most probably involve a more sophisticated approach to generate predictions
that do not solely rely on the most probable hypothesis. In fact, to exhaust all
possibilities given by the LSTM-MDL, an approach that tracks and incorporates
all hypotheses generated by the model should be preferred over the common ap-
proach. Also, another adaption of the model that incorporates the positions and
offsets may provide the model with richer possibilities to model pedestrian mo-
tion. Besides that, when using this model as a predictor, the restrictions and
problems discussed in this paper should be kept in mind.
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5 Conclusions

In this paper, we explored how näıvely applying a LSTM-MDL model for pre-
dicting human trajectories can lead to unreliable results. While these excel in
handwriting generation, model adaptations that consider explicit spatial infor-
mation can unexpectedly collapse in prediction tasks. Especially in the context
of surveillance data, common metrics like endpoint prediction result in the fal-
lacy that the model cannot correctly represent the data. In order to demonstrate
the capabilities of the model to capture the training data characteristics, an ex-
tensive comparison of different underlying data statistics was provided. As the
model proves to be capable of capturing the data statistics, we further revealed
the occurring reasons for the problems and shortcomings of the model on syn-
thetic data. Finally, we provided research directions on how to overcome some
limitations of the model.
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